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Improved models for the movement of fluid by cilia are presented. A theory 
which models the cilia of an organism by an array of flexible long slender bodies 
distributed over and attached at one end to a plane surface is developed. The 
slender bodies are constrained to move in similar patterns to the cilia of the micro- 
organisms Opalina, Paramecium and Pleurobrachia. 

The velocity field is represented by a distribution of force singularities (Stokes 
flow) along the centre-line of each slender body. Contributions to the velocity 
field from all the cilia distributed over the plane are summed, to give a streaming 
effect which in turn implies propulsion of the organism. From this we have been 
able to model the mean velocity field through the cilia sublayer for the three 
organisms. We find that, in a frame of reference situated in the organism, the 
velocity near the surface of the organism is very small - up to one half the length 
of the cilium-but it increases rapidly t o  near the velocity of propulsion from 
then on. This is because of the beating pattern of the cilia; they beat in a near 
rigid-body rotation during the effective (‘power ’) stroke, but during the recovery 
stroke move close to the wall. Backflow (‘ reflux ’) is found to occur inthe organisms 
exhibiting antiplectic metachronism (i.e. Paramecium and Pleurobrachia). The 
occurrence of gradient reversal, but not backflow, has recently been codrmed 
experimentally (Sleigh & Aiello 1971). 

Other important physical values that are obtained from this analysis are the 
force, bending moment about the base of a cilium and the rate of working. It is 
found, for antiplectic metachronism, that the force exerted by a cilium in the 
direction of propulsion is large and positive during the effective stroke whereas 
it is small and negative during the recovery stroke. However, the duration of 
the recovery stroke is longer than the effective stroke so the force exerted over 
one cycle of a ciliary beat is very small. The bending moment follows a similar 
pattern to the component of force in the direction of propulsion, being larger in 
the effective stroke for antiplectic metachronism. In  symplectic metachronism 
(i.e. Opalina) the force and bending moment are largest in magnitude when the 
bending wave is propagated along the cilium. The rate of working indicates that 
more energy is consumed in the effective stroke for Paramecium and Pleuro- 
brachia than in the recovery stroke, whereas in Opalina it  is found to be large 
during the propagation of the bending wave. 
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1. Introduction 
The topic of this paper is one of the many interesting subjects in the new and 

rapidly developing field of biomechanics, where a knowledge of both fluid 
mechanics and physiology is required. Cilia have many functions, existing in 
nearly all phyla of the animal kingdom and some of the plant kingdom. Some 
of the functions of cilia are in locomotion of micro-organisms, cleansing of gills, 
feeding, excretion and in reproduction. The mechanics of ciliary motion has 
interested both zoologists and fluid mechanists for many years. Both Gray 
(1928) and Prandtl (1952, p. 238) expressed considerable interest in the fluid 
mechanics of the cilium’s movement. This present paper is directed towards the 
theory of the propulsion of micro-organisms by cilia, although it may have some 
applications to flow in large diameter tubes due to ciliary activity (e.g. mucus 
in the trachea). In  micro-organisms we have the opportunity to observe cilia 
in their near natural surroundings which means that we can compare our 
theoretical models with the observations of the proto-zoologists. Many of the 
ideas of this paper have been gleaned from films on both cilia and flagella (Holwill 
& Sleigh 1967a; Whet 1970). 

Micro-organism locomotion can be broadly split into two types, if we neglect 
the inefficient and ineffective movements due to jet propulsion and the peculiar 
movements of the amoeba. The first is the flagella type of propulsion, charac- 
terized by spermatozoa, which consists of a single (or several) long slender 
organelle, that exhibits a ‘symmetrical’ bending wave. The other type is that 
due to a dense covering of beating cilia over the external surface of micro- 
organisms. Cilia have the same internal structure as flagella but, however, tend 
to have highly asymmetrical beating patterns. Many cilia exhibit a three- 
dimensional motion as they beat as in fact do flagella when they beat in a helical 
movement (see, for example, Chwang & Wu 1971). 

The classical cilium beat can be split into two parts, one being the effective 
(‘power’) stroke, in which the cilium (or ‘ combplate’) beats in a near rigid-body 
rotation about the base, while during the recovery stroke it drags itself back 
near the wall. The recovery stroke is initiated by the propagation of a bending 
wave from the base to the tip of the cilium. 

Proto-zoologists quite often observe that the flagella near to each other tend 
to synchronize their movements (see theoretical discussion in Taylor 1951). 
Generally in cilia the opposite observation can be made because adjacent cilia 
in the beating direction are out of phase and this is realized in the metachronal 
wave. Thus, when viewed from above the metachronal wave appears as a wave 
passing over the surface of the organism. In  this paper we concern ourselves 
with two different types of metachronal wave. The first, called symplectic meta- 
chronism, occurs when the wave travels in the same direction as the effective 
beat. The other variety occurs when the wave travels in the opposite direction 
to the effective beat and is classified as antiplectic metachronism (Knight-Jones 
1954). We also consider a synchronized beat when all the cilia are beating in 
phase, but if this happens the cycle of beating is altered considerably. We use 
data from three organisms as models for our theory, these being Opalina, which 
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exhibits symplectic metachronism, and Paramecium and Pleurobrachia, which 
show antiplectic metachronal wave patterns. Data on these organisms with 
respect to the cilium’s beat is obtained from Sleigh’s (1962, 1966, 1968) papers. 

In  previous models for ciliated organisms (Blake 1971a, b ) ,  we considered 
a model which used the concept of an ‘envelope’ over the undulating cilia. In  
this approach the individuality of the ciliary beat was replaced by the action of 
a wave. This method is satisfactory for organisms which exhibit symplectic 
metachronal wave patterns, but is inappropriate for antiplectic metachronism. 
In  this paper, we use an approach which is suitable for both types. In  antiplectic 
metachronism the cilia are spread out during the effective stroke, so we need 
to take into account the individuality of the cilium’s movement. To do this, we 
develop a theory which models the cilia of the organism by an array of flexible 
long slender bodies distributed over and attached at one end to a plane surface. 
The slender bodies are constrained to move in a similar pattern to the cilia of 
the micro-organisms (i.e. using an approximation employing numerical tech- 
niques). The velocity field is represented by a distribution of singularities along 
the axis of the slender body. A method of obtaining this singularity and the 
resulting interpretation of the solution can be found in Blake (1971 c ) .  The far- 
field solutions are of fundamental importance in understanding the movement 
of cilia. 

Before we can define the relevant equations of motion a discussion of the 
Reynolds numbers for the movement of a cilium (R,) and the organism (R,) is 
needed. Thus we d e h e  

R, = afio/V, Rb = ug/V, (1) 

where a is the average angular frequency, L the length and ro the characteristic 
radius of the cilium, U the velocity of propulsion and 9 the length of the 
organism, and v is the kinematic viscosity. In  this paper we consider an infinite 
planar model of the organism so R, is the only relevant Reynolds number. Be- 
cause of the small length scales in protozoa ( L  - lOpm, ro - 0.1 pm) the cilium 
Reynolds number R, is very small, of 0(10-2 to for many small micro- 
organisms. However, in some micro-organisms the beat fequency f (where 
Q = 2nf) may be high so the cilium Reynolds number R, may approach one, 
while in the Ctenophores (‘ comb bearers ’), where many cilia combine together 
(0( lo5) cilia) to form a combplate, the resulting Reynolds number for the comb- 
plate may be greater than one (a combplate may be 800pm in length and 500pm 
in width with a beat frequency around 20s-1 which would give R, - 10-20). 

Thus, in many micro-organisms the Reynolds number is small enough to 
justify using the creeping-flow equations, defined as follows: 

V p = p Q 2 q ,  V . q = O ,  

where p is the pressure, q the velocity vector and p the dynamic viscosity. The 
shape and movement of the cilium during its beat suggests that a ‘Stokeslet’ 
distribution (and the associated image, i.e. the Green’s function obtained from 
(2)) along the centre-line can be employed. The cilium tends to beat in a near 
rigid-body movement in its effective beat and then drags itself back through the 

1-2 
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FIGURE 1.  Diagrams illustrating the co-ordinate representations for a cilium : (a )  Cartesian 
co-ordinates for g(s, t ) ;  ( b )  the local ‘inner’ co-ordinates, where t is the tangent and n is 
the normal to the centre-line. The radius of the cilium at P is ro(s).  

fluid to the beginning of its effective beat again. Hancock (1953) showed that 
the movement of an infinite cylinder perpendicular to its axis is twice as effective 
in producing ‘general motion’ as moving the cylinder parallel to itself (i.e. along 
its axis). This classic paper of Hancock’s was used t o  obtain the velocity of 
propulsion for spermatozoa in an infinite viscous fluid. As a result of this work, 
Gray & Hancock (1955) wrote a paper using simple dyiiamical arguments to 
obtain the velocity of propulsion of sea-urchin spermatozoa with remarkable 
accuracy. This paper became the forerunner of many similar papers on flagella 
and cilia motion (see, for example, HolwillI966; Holwill & Sleigh 19673; Brokaw 
1970). 

Barton & Raynor (1967) use a model for a cilium in their paper on motion of 
mucus in the trachea. They take the cilium to be a rigid rod rotating about its 
base which automatically shortens for the recovery stroke. A distribution of 
these rods is then made over a plane boundary, with no account being taken of 
the metachronal wave over the surface of the sheet of cilia. There are several 
features of their paper which we wish to improve upon: some of these being an 
accurate representation of the movement of a cilium, the influence of the wall 
on the far field, inclusion of the metachronal wave and interaction between 
the cilia. 

2. Single cilium 
For our discussion of the velocity field due to a single cilium, we suppose that 

a long slender body, representing the cilium, has its base attached to an infinite 
planar surface (XIOX, plane). Axes are taken fixed in the organism. We assume 
that the slender body is essentially cylindrical, of radius r,,(s), where s measures 
the distance along the centre-line of the cilium from its base (the origin in 
figure 1). Although we have taken the cross-section ofthe cilium to be cylindrical, 
it could be altered to include a flat-plate cross-section (e.g. to take into account 
the combplates of some Ctenophores) by extending the approach of Batchelor 
(1970) for non-cylindrical cross-sections. The length of the cilium is taken to 
be L, so that 0 d s < L, while the position of a point P on the cilium centre-line 
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is designated in Cartesian co-ordinates by g(s, t )  (a Lagrangian formulation in 
distance s and time t ) .  

The introduction of a distribution of singularities along the centre-line is 
a simplification that is often made when we are considering long slender bodies. 
Ladyzhenskaya (1963) showed that an exact and unique solution exists for 
Stokes flow if a surface distribution of singularities is used. We assume that this 
can degenerate into a distribution of Stokeslets, Stokes-doublets and higher 
singularities along the centre-line of a long slender body (see Tuck (1968), 
Batchelor (1970) and Tillett (1970) for a further discussion). 

The singularities needed for this model are required to satisfy the no-slip 
condition on the surface of the plane boundary. Thus, the equations and boundary 
conditions defining this singularity (Green’s function) are as follows : 

Vp = pV2u + F ~ ( x  - g) ,  
v.u = 0, 

u = 0 on x 3 =  0, 
(3) 

where p is the pressure, p the viscosity, u the velocity vector, F the force and 
6(x-E,) the Dirac delta function. We define the Green’s function and velocity 
as follows : 

q x )  = wJf(x, EJ 

where a = 1 or 2, and r and R are defined as follows: 

r = [ (?~-Ci )~+(xz -&)~+  (x~-C313)~14 
and R = [(XI - gd2 + (% - [A2 + (x3 + E3)214, 

the coefficients ri and Ri being apparent from these definitions. The other 
singularities, apart from the initial Stokeslet (the ri terms), are a Stokeslet, 
Stokes-doublet and a source-doublet situated at the image point (el, E2, - &). 
Equation (4) can be obtained from Oseen (1927) for the movement of a sphere 
near a wall at very low Reynolds number. A discussion of an alternative method 
for obtaining this singularity and an interpretation of the result is given in 
Blake ( 1 9 7 1 ~ ) .  It is shown that the far field for a point-force singularity has 
a Stokes-doublet (stresslet) character for a force parallel to the plane. In the 
other case, for a force perpendicular to the plane boundary, the far field is a 
combination of a Stokes-quadrupole and a source-doublet, which is a higher 
order singularity than for the case of a force parallel to the plane. 

The total velocity field due to a single cilium can now be expressed in terms 
of the following integral equation: 
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where Fk[g(s, t ) ]  is the functional representation for the force distribution along 
the slender body. 

We define the velocity at the surface of the cilium, which corresponds to 
(s,r,(s),(p) (0  < Q < 2n) in the ‘inner’ co-ordinates, by applying the no-slip 
condition 

u: = ati /at (i = I, 2,3) .  (6) 

Therefore we can equate U,* to the integral (5), thus defining an inverse problem 
for the force F. This is extremely difficult to solve as we need to t\ake into account 
interaction effects with other cilia and the influence of the wall. Further dis- 
cussion on calculations for the force are made in 5 4. 

A force singularity of strength Fa (a = 1,2), acting in the x, direction at  
(&, c2, t3) a distance .& above the plane, induces the following far-field effects 
(i.e. stresslet) on the velocity: 

where 

the form of components r: being obvious from this definition. The &Fa term 
in (7)  can be interpreted as a ‘first moment’ type term. The error terms in (7) 
consist of higher singularities (e.g. t3&q; i ,j  = 1,2 ,3)  or ‘moments’ of the form 
t3F3 (i.e. Stokes-quadrupole terms). 

Thus the velocity in the far field due to a single cilium at the origin can be 
written as 

r* = [(XI - tJ2-t. ( z 2  - $2)2 + 4 1 4  

where the components r: are defined in (7). To include the influence of all the 
cilia we need to sum the velocities over an array of similar slender bodies. 

A physical interpretation of the movement of a cilium in terms of near- and 
far-field influences can be given. We can approximate the region around the 
force singularity, which has a Stokeslet (O(l/r)) velocity field, by a sphere of 
radius it3. This means that during the effective stroke the cilium influences a 
relatively large volume of fluid with its Stokeslet field (see figure 2 (a ) )  in com- 
parison with its movement in the recovery stroke, when only the region in the 
close proximity of the cilium is influenced by the near field (figure 2 ( b ) ) .  Further- 
more, one can extend this to a row of cilia in different stages of their beat. The 
Stokeslet region influenced by the effective beat consists of the upper half of 
the ciliary sublayer, while only the lower part feels the recovery stroke. Thus 
one might anticipate the oscillatory component of the velocity to be small in 
relation to the mean flow in the upper half of the cilia sublayer. Conversely, the 
oscillatory component can be quite large in comparison with the mean flow in 
the lower part of the sublayer (figure 2 (c)). 

A further feature contributing to the large effective stroke Stokeslet region is 
that the force is larger during the effective stroke in antiplectic metachronism. 
This is due to two factors, one being the larger relative velocities of the effective 
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Recovery a/  / 

i 
Near fields 

effective stroke 

(4 
FIGURE 2. (a) The Stokeslet near field during the effective stroke of a cilium; ( b )  Stokeslet 
field during recovery stroke; and (a )  the relative near fields in a wave of beating cilia. 
In region 0 the fluid is influenced mainly by the effective stroke while in @ it is influenced 
equally by both movements. 

stroke, the other being the fact that a slender body exerts nearly twice the force 
(for a given velocity) if it  moves normally instead of tangentialIy, 

Thus, we have two reasons why a cilium moves in a near rigid-body motion in 
its effective stroke, and close to the wall during the recovery movement, these 
being the near-field influences on the fluid and the force exerted in each phase of 
the beat. 

Experimentally it is observed (Sleigh & Aiello 1971) that the oscillatory com- 
ponent is small in the uppermost part of the sublayer; however, further experi- 
mental work needs to be carried out in the lower regions of the cilia sublayer. This 
has a rather interesting effect on the mean velocity profiles which are discussed 
in a later section. 

3. Array of cilia 
Let us consider a regular array of cilia bases on the infinite plane x3 = 0, 

with spacing a in the x1 direction and b in the xg direction (see figure 3). The 
effective stroke of the ciliary beat will be taken in the direction of increasing zl, 



FIGURE 3. Illustrations of regular array of cilia: (a )  from above and ( b )  side-on view for 
symplectic and antiplectic metachronism. The spacing in the x1 direction is a, while in 
the x2 direction it is b .  

although it need not be a planar beat. We suppose the wave crests of the meta- 
chronal wave are parallel to the x2 axis, that is, we are modelling either anti- or 
simplectic metachronism. The strength of the force singularity distribution F will 
be equal along lines parallel to the x2 axis, but variable in the x1 direction. The 
justification for this approach is that organisms exhibiting symplectic or anti- 
plectic metachronism are generally elongated or flat so the approximation of 
using an infinite plane is plausible. However, in the other types of metachronism 
cilia tend to be in short rows so this model cannot be used. 

We need a general formulation for the movement of a cilium so that it can 
move freely. This is desirable because organisms such as Paramecium clearly 
have a beat three-dimensional in form. To model the metachronal wave described 
above and the movement of a cilium at the general point (ma, nb) on the X I O X ,  
plane we define 

5; = + 61(’, r ) 7  5; = x2 f 62(s7 r ) ,  gi = &(’, ‘)7 (9) 

where x , = ma, x2 = nb and r = kx, at. We now have a model for the meta- 
chronal wave which has a velocity c = a/k, wavelength 2nlk and frequency 
0/2n. Thus the positive sign is used to model antiplectic metachronism while the 
negative sign models symplectic metachronism. 

The total bulk velocity field in terms of all the slender bodies distributed in 
an array over an infinite plane can be represented in terms of the following 
infinite double summation: 

with F’, G; and F’ all being defined previously. This does not allow us to say 
anything about the local flow properties of the cilium (e.g. the flat combplates 
of the Ctenophores tend to ‘capture’ some particles, especially near their base). 
The velocity field of most interest to us is the mean field, so we define 

u = U+U’, where U = 5, (11) 

with the bar over the velocity symbol implying the time mean. Because of the 
path of movement of a cilium we would expect 111‘1 to be considerably less than 
I Ul in a region x3 > 6, where 6 < %L, L being the length of the cilium (see figure 2). 
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Equation (10) is difficult to evaluate, but it may be simplified if we take both 
a time and a spatial average in the xl, x2 plane. To improve the convergence of 
the double sum we apply the Poisson summation formula, which employs the 
Pourier-transformed double sum (see, for example, Lighthill 1958, p. 67; Jones 
1966, p. 276). The transformed sum now becomes a decreasing exponential 
infinite series, so for an approximation we consider only the zeroth term, an 
estimation being obtained for the error. Thus on evaluation we obtain 

U3(x3) = O(ab/L2) rL,  

where K(x3, t3), the ‘kernel’ function, is obtained by spatially integrating G 
over the X10X2 plane and is given by 

K@3,53) = D 3 + t 3 -  1x3-5311 

The weight function w(s,  t ) ,  obtained from the Jacobian in the integration, is 
defined by 

1 1  : synchronized,, 

1 . symplectic, 

1 : antiplectic. 

w(s, t )  = 1 - (l /c) at,/at.  I 1 -t (I/c) 

For the integral to be non-singular we need 

1 a5 If--l > 0 v S E ( O , L ) ,  
c at 

and throughout the beat because to evaluate the sum we need to replace the 
discrete system by a continuum. However, since cilia are discrete identities they 
need not obey this constraint and often do not. In  many organisms exhibiting 
antiplectic metachronism, the ciliary beat is a three-dimensional motion, so the 
above restriction may be avoided. Generally ab < L2 so the approximation is 
a reasonable one. 

We turn to a physical interpretation of the kernel function K(x3, t3). Prom 
Blake (1971 c) we know that the only contribution to the force integral (in terms 
of the stress) comes from the plane surface which lies between the singularity and 
the stationary plane boundary, the contribution from the hemisphere at  infinity 
being zero. Thus, if we consider a spatial average, in the xl, x2 plane, of thevelocity 
field for a force Fl per unit area on the plane x3 = t3 (even though the force 
distribution may be at discrete points) we obtain 

(a = 1,2).  I Fl = pddUa/dx3 for x3 < t3 
0 = pdUa/dx3 for x3 > t3 
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FIGURE 4. The shaded region indicates the altered averaging area in the effective beat for 
(a) symplectic and (b )  antiplectic metachronism. 

Averaging area Symplectic (a, = a,) Antiplectic (a, = 3a,) 
Effective 1 - aL/c 1 + 2nL/c 
Recovery g < i L  1 + +aL 1 - &TL/C 

This, when integrated, yields 

ua(x3) = (‘/PI K K ( x 3 , k ) .  (17) 

This is what we would expect from the Stokes-flow equations, in the absence of 
a pressure field, because the only allowable velocity field is that of shear flow 
between the two planes and a constant streaming above. 

The velocity U: (a = 1,2) of propulsion of the infinite sheet, which can be 
obtained from either (12) or by summing the far fields of all the cilia (see equation 
( 8 ) ) )  is 

77; = ( l / p ) &  (a = 1 ,2 ) ,  

with 

where B, is the time-averaged stresslet strength per unit area. The weight func- 
tion w(s , t )  takes into account the metachronal wave. It alters the ‘averaging 
area’ from ab to abfi~-l(s,t) because of the influence of the wave. The term 
(l/c) atJat  is the ratio of the cilium’s x1 velocity to the metachronal wave speed. 
To gain some idea of the magnitude of this ratio we define two angular frequencies 
which correspond to the effective and recovery strokes. Thus, we define 

0- = 2~e0-?./(0-e+0-?.), (19) 

where CT is equal to the average angular frequency and ce and crr are equal to 
the effective and recovery angular frequencies respectively. In  figures 4 (a) and ( b )  
we illustrate the averaging areas for the ‘basic element ’ ab during the effective 
strokes for both symplectic and antiplectic metachronism. It is obvious from 
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figure 4 (a) that during the effective stroke in symplectic metachronism the cilia 
are close together, whereas in antiplectic metachronism the cilia are spread out. 
In  the recovery stroke the opposite occurs, but in this case the cilia are moving 
much more slowly, especially in antiplectic metachronism (for symplectic meta- 
chronism CJr,. N l, for antiplectic metachronism 2 5 uJar 5 3) and in a region 
z3 < BL, so the weight functions w(s, t )  will be near 1.  

We can make some general observations about the stresslet strength S,  
(a = 1,2).  This function of time takes on both positive and negative values 
depending on the stage of the beat of a cilium. It is apparent from (18) that to 
maximize the mean of 8, over a cycle would be to have S,  as large as possible 
in the effective stroke and as small as possible (in magnitude) during the recovery 
stroke. This is one reason why cilia tend to rotate like rigid rods in the effective 
stroke (0 < g3 < L)  and retreat ‘ limply ’ near the wall during the recovery stroke 
(0 < g3 < iL). Obviously there are many other physical effects governing the 
motion of a cilium, but we leave these to a further discussion after the force Fa 
has been obtained. There are many variations in the movement of cilia from 
organism to organism; this is due to the varying physical situations and the 
associated biological optimization of the movement, function, energy expen- 
diture, etc. 

From this discussion it follows that the drag D, of the ‘basic element’ ab 
which contains the cilium is 

Thus 

which indicates that the sum of the force exerted by a cilium in one cycle and the 
drag of its ‘basic element’ of area ab is equal to zero. This is what we would 
expect from the general principle that the force exerted by a micro-organism is 
zero. In the envelope approach (Blake 1971a,b), we used this principle to 
eliminate the ‘Stokeslet ’ terms in our expression for the velocity fields. 

4. Force exerted by a cilium 
In  this section we evaluate the force exerted by a cilium as a function of its 

movement and include the influence of nearby cilia. The problem of a curved 
slender body in an infinite viscous fluid has been treated previously by Hancock 
(1953) and Cox (1970, 1971). 

We could use either approach to the problem. Cox’s asymptotic expansion for 
the force F, which is a formal, mathematically valid expansion, is a little un- 
wieldly. The approach derived from Hancook, as illustrated in the paper of 
Gray & Hancock (1955), is perhaps more suited to this problem. We shall use 
a combined theory employing features from both papers. Another method that 
may have some applications to this type of problem is that of Batchelor (1971) 
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for ' concentrated' distributions of slender bodies. In  this analysis, we shall 
assume that the cilia are relatively spread out, at  least during the effective stroke, 
when they are exerting their largest force (e.g. in antiplectic metachronism - 
Paramecium and Pleurobrachia), so the modified method of Gray & Hancock 
will be used. From the linearity of the creeping-flow equations, we can write 
down the element force 6F in terms of the tensor Aij as 

6Fi = ~ A , v , & ,  (21) 

where oi is the velocity of the body relative to the fluid. 
The Gray & Hancock (1955) technique is based on the simple dynamical 

assumption that, when it moves through the viscous fluid, each infinitesimal 
element of the cylinder exerts a normal and tangential force which is proportional 
to the velocities in these directions (i.e. equation (21)). Gray & Hancock used 
the solution for the case of an infinite cylinder when the ratio of the coefficients 
of the velocities in these two forces (i.e. y = C,/CT) is two. However, it is found 
(Hancock 1953; Tillett 1970; Batchelor 1970) that for a finite slender body y is 
less than two, having an asymptotic expansion in terms of the slenderness co- 
efficient of the body. The expansion for y (Tillett 1970) for a straight slender body 
in an infinite viscous fluid is 

which if applicable to cilia indicates a range of y from 1.6 to 1.9. 
If we take the force distribution exerted by the cilium on the fluid at the 

point P,  we can develop the following representation for the normal and tan- 
gential force due to the movement of the cilium. 6FN and SF' are the normal 
(along n) and tangential (along t) force elements and V, and V, the normal and 
tangential velocities respectively (the normal n is chosen such that the binormal 
component of the velocity is zero). 

The forces which the cilium exerts on the fluid may be written down in terms 
of the local fluid velocity v as 

where C, and CT are the normal and tangential force coefficients and are defined 
as follows: 

' T  = 2mp/[10g ('/'O) k1]2 CAl = YcT, (24) 

where 

and k ,  is a constant obtained by integration over the length of the cilium (i.e. an 
average value). For simple shapes the constant k ,  can be easily obtained (e.g. for 
the straight slender body, see Cox 1970)) but for the general case needed in this 
theory we shall content ourselves with varying it slowly and using k, = O(1). 
I n  zoological literature k, is often taken equal to log 2 - and y = 2. C, and C, 
may be referred to as the modified Gray 8~ Hancock coefficients. Improved values 
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of C, and C, have been formulated in a recent paper by Shack, Pray & Lardner 
(1971). 

From (23) we can now write down the force in the original co-ordinates as 

6F = [C,(v. t ) t + C,( v . n) n] 68, (25) 

with the constraint that v.b  = 0. By making use of the properties of the 
idemfactor I and substituting for t ( =  ag/as) and C, we obtain the following 
representation for the force element 6F in terms of the movement of a cilium. 

If we took y = 2 and k, = 0 we would generate the first approximation in the 
asymptotic expansion of Cox (1970). 

The interaction effects of all the other cilia can be included in the velocity v, 

(27) 
by defining 

where u* is the interaction velocity field. Cox (1970) indicates that the interaction 
effects are of second order, which is a result of the iterative process used. We 
find it more convenient to use the above definition because we can then define 
the velocity field in terms of an integral equation. 

v = a q a t  - u*, 

5. Coupled integral equations for mean velocity field 

as U. The interaction velocity u* of (35) will be taken as 
We have previously defined the total velocity field as u and the mean velocity 

- 
u* = u-V+V’, v‘ = 0, (28) 

where V is the contribution of the cilium in question to the local mean velocity 
field. To define the coupled integral equation we will consider the mean 
velocity fields U and V and neglect the oscillatory variation v’. Thus the 
mean velocity field U, (a  = 1,2)  is defined by 

and the mean velocity field due to a single cilium is defined as follows: 

where G{(K, e )  is the Green’s function defined in (4) while [ implies g(3, t ) .  The 
integral equation (29) is solved by matrix inversion using an iterative process 
for V in (30). 
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FIGURE 5. Measurements recorded in on0 cycle of a cilium’s beat. Lagrangian point sk 
along cilium. (X, ,  Y,, Z,, T,) specifies the point during cycle, while the dashed line indicates 
its path through one cycle. 

6. Numerical calculations on the movement of a cilium 
6.1. Movements of a cilium 

In the prior analysis the position of each point of the cilium has only been 
specified by the general vector function g(s,7). In  this section we define and 
obtain approximate analytic representations for the observed periodic beat of 
a cilium. The general movement of a cilium a t  a point (zl, xz) on the XIOXz plane 
was defined in (9), although in the numerical models we take gz = 0 because the 
available data is only in a two-dimensional form. 

The movement of a cilium is periodic, so we can represent & (i = 1,2 ,3)  by a 
Fourier series expansion in 7.  The following measurements are records of the 
cilium’s movement. We take K stations along the length of a cilium, denoted 
by sk ( k  = 1, . . ., K ) ,  and at  each station sk we record the periodic movement of the 
cilium (X,, Y,, Z,, T,), p = I, . . ., 2N + 1. (Xp, Y,, 2,) denotes the path the point 
skon the cilium traces out in one cycle (see figure 5 ) .  The Fourier series representa- 
tion for gc (i = I, 2,3)  is as follows: 

N 

n= 1 
N 

n=l 1 = Bu,(s) + [u,(s) cos n7 + b,(s) sin n ~ ] ,  

g2 = +co(s) + x [c,(s) cos n7 + d,(s) s inn~] ,  

J N 

n=l 
g3 = ijo(s) + c [ f , ~  COB n7 + g,w sin n71, 

where a,(s), b,(s), c,(s), d,(s), fn(s) and g,(s) are polynomial functions of s, 
determined by a least-squares fit. The Fourier series coefficients a;, b t ,  . . . are 
obtained at each point s, and the polynomials a&), b,(s), . . . are then obtained 
by a least-squares fit to the coefficients. Thus, 

M M 

m=l m = l  
a,(s) = x Amnsm, b,(s) = c Bm,sm, .... ( 32) 

There are no constant in terms in the polynomaial expansion because &(O, 7 )  = 0 
(i = 1, 2 ,3) .  
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(b)  (4 
FIGURE 6. The Fourier-series-least-squares models for (a )  Opalina, ( b )  Paramecium and 
( c )  Pleurobrachia. Numbers indicate successive stages of the beat. The effective stroke in 
Opalina is from 5 to 9, in Paramecium is from 1 to 3 and in Pleurobrachia from 1 to 3. 

Calculations were carried out on data obtained from three organisms, namely 
Opalina, Paramecium and Pleurobrachia (Sleigh 1968). The data was obtained 
by freehand sketching of the diagrams of Sleigh, so the data are not particularly 
accurate. Further inaccuracy occurs for the case of Paramecium, where the 
cilium’s beat is plainly three-dimensional, but no reliable data are available on 
its three-dimensional movement. Pleurobrachia probably contravenes the low 
Reynolds number assumption, but on the other hand the best available data 
that we have are on this organism. 

The Fourier-series-least-squares process was used with N = 3 for Paramecium, 
N = 4 for Opalina and N = 5 for Pleurobrachia with M = 3 in all cases. The data 
were collected at  10 points along the cilium (excluding the origin). In  figure 5 
we see the approximate analytic representation for the movement of the cilia. 
It appears to be reasonably accurate except in regions of high curvature. It 
may be argued that it is pointless t o  obtain the least-squares fit to  the cilium’s 
movement where a direct numerical approach would be more appropriate. We 
prefer the present approach because of the inadequacies of the data, so that in 
the following calculations the gradients used will be analytic values obtained 
from the Fourier-least-squares fit described in (31). At any rate we can compare 
the movements illustrated in figure 6 with the calculations for the velocity fields 
and force and bending moments shown in figures 7 and 10. 

6.2. Mean velocity Jield 
To find the mean velocity field in the cilia sublayer we need to  resort to numerical 
techniques. The best way to solve the integral equation in (29) is by the matrix 
equation approach. Thus if we non-dimensionalize the integrals (29) and (30) 
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FIGURE 7.  Mean velocity profiles for ( a )  Opalina, ( b )  Paramecium and ( c )  Pleurobrachia. 
The profiles are taken at  T = 150. To give an indication of the variations of U with y,  
K and T w0 present the following table (tip speed of cilium - 1-1.5uL for (a) and 2-3aL 
for ( b )  and (c)) .  

Symplectic Antiplectic 

Increase y Increases U Increases U 
Increase T Increases U Increases U 
Increase K Increases U Decreases U 

for the velocities U, and 
respect to L, we obtain the following non-dimensional parameters : 

with respect to crL and the length dimensions with 

T is generally quite large (i.e. 10-300)' while I K I  < 2-3. The integral equations 
may now be written as 

and 

where G$(S,E) is the Green's function defined in (4). 
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T 

FIGURE 8. Variation of the velocity of propulsion Urn with T for values of y and K corre- 
sponding to those in figure 7 (numbered 1 , 2 , 3 ) .  - - - - , value of T used in figure 7. 

The numerical technique used for solving (34) and (35) was to start with 
= 0 in (34) and obtain a first approximation to U, which was then substituted 

into (35) to obtain the first iterated value of &. This was then resubstituted into 
(34) to obtain an improved value for U,. The rationale behind this iterative 
technique is that U, is of O( l), whereas V is of O( l/log (L/r,,)), which is a smaller 
order of magnitude. In  this numerical procedure we are left with three arbitrary 
constants which we can vary. These are y, K and T and the influence of these is 
shown in the diagrams. 

In  figure 7 we have shown the mean velocity fields through the cilia sublayer 
for our three modelled organisms. In  antiplectic metachronism we observe 
that backflow about one tenth of the flow at the top of the sublayer is found 
to occur near the base of the cilia. I n  symplectio metachronism there was no 
observable backflow. To illustrate the variation of the mean flow field with 
respect to the arbitrary constants y, K and T we shall use the table shown under 
figure 7 .  

On figure 7 we have chosen varying values for both y and K at constant T = 150. 
In  figure 8 we have plotted the velocity at the top of the cilia sublayer against T 
for several values of y and K corresponding to those in figure 7. Because of the 
numerical technique used this velocity is equal to 

(36) U" = a(T) T/( 1 +P(T) T), 

where a(T) and P(T) are rational functions of T such that 

2 

lima(T) = a, and limp(T) = Po, 
T - t m  T+m 
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0.3 
U / a L  

FIGURE 9. Comparisons between experiment and theory for the mean velocity field in 
Pleurobrachia. -, t,heoretically predicted profiles; - - - - -, profiles observed experiment- 
ally (Sleigh & Aiello 1971) .  1 corresponds to the combplate beating with a frequency of 
5 beatsls (although intermittently) while the profile in 2 is for a frequency of 12 beatsls. 

so that lim Urn = ao/,80. (37) 
T-XO 

This is clearly indicated by the asymptotic nature of the graphs in figure 8. 
Comparisons with experimental observations are difficult because little work 

has been done in this field to the author’s knowledge. We would expect the above 
theory to be reasonably valid in Opalina and Paramecium if they exhibited the 
two-dimensional beat used in the calculations. However, the only known observa- 
tions are those of Sleigh & Aiello (1971) on Pleurobrachia. We do not expect OUT 

theory to be particularly appropriate on two counts: because the Reynolds 
number is probably greater than one and the slender-body theory is violated. 
Even with these difficulties we have included calculations of Pleurobrachia. 

For reasonable values of y, K and T the comparisons between experiment 
(Sleigh & Aiello 1971) and theory are shown in figure 9. As an estimation for y 
and T we can use the values of the drag for a disk moving broadside on and 
edgewise (Lamb 1932), which would give y = 1.5 and T = y L 2 / a b .  The ratio 
L2/ab is of O( 1) .  The diagram shows reasonable agreement between theory and 
experiment above x3 > 0.6 even with all the associated difficulties. Below this 
level observations are not particularly accurate anyway, so there is room for 
improvement in both the theoretical and experimental work. 
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(4 
FIGURE 10. Graphs showing the forces and bending moments during one cycle of the 
beat for ( a )  Opalina, (6) Paramecium and (c) Pleurobrachia. Ths calculations are carried 
out for y = 1.5, T = 150 and K = kO.5. Both the effective and recovery strokes are 
marked. 

6.3. Calculations of the force and bending moment 

The force and bending moment exerted by a cilium is of particular interest to 
the proto-zoologist as both experimental (Yoneda 1960, 1962) and theoretical 
work (Harris 1961) has been carried out on this subject. A review of this can be 
found in Holwill’s (1966) paper. Harris (1961) calculated the bending moment 
by using Jeffery’s (1923) formula for the couple produced by rotation of an 
ellipsoid in a viscous fluid. He obtains 

(38) 
2-2 
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FIGURE 11. Diagram illustrating variations in sign of forces (PI and Fa) 
during beating cycle of a cilium. 

where u, L and ro are as defined in the previous analysis. 

following integrals: 
We define the force F and bending moment M about the base of a cilium by the 

I 

In the graphs of figure 10 we have plotted O,, 8, and T: against t ,  the time. 
For the cases which exhibit antiplectic metachronism (i.e. Paramecium and 

Pleurobrachia) the force in the x1 direction in the effective stroke is larger than 
that of the recovery stroke, although the force exerted over a cycle is very small 
and may be negative. This indicates, because inertial effects are neglected, that 
the drag on the surface of the organism is very small. One would intuitively 
expect little flow and low shear rates in this region of the cilia sublayer. In  
Opalina, which exhibits symplectic metachronism and which does not have the 
same distinction between the effective and recovery strokes, it is found that the 
force distribution is different. It appears that F3 is large, relatively speaking, 
during the period when the bending wave is being propagated up the cilium 
immediately before its effective stroke (i.e. 3-5 in figure 6). To give us some 
understanding of the oscillation of sign experienced by F3, figure 11 has been 
used to help explain this. During the effective stroke, F3 changes sign as the 
cilium moves past the x3 axis. It again changes sign during the propagation of 
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FIGURE 12. Graphs showing the rates of working for Opalina, Paramecium and Pleuro- 
bruchia with y = 1.5, T = 150 and K = f 0.5. The time spacing corresponds to those of 
figure 10. 

the bending wave along the cilium, and may alter again before the beginning 
of the effective stroke. The bending moment follows a similar pattern to Fl in 
that it is large and positive during the effective stroke and small and negative 
during the recovery stroke for antiplectic metachronism. 

6.4. Rate of working 

Another physical quantity which is of interest to both the zoologist and the 
fluid dynamicist is the rate of working P of a cilium. The rate of working P, as 
a function of time, can be defined as 

with 

1 
2np0-2~3 

log (L/ro) + 
A h  

P =  

ae A 

at 
6 = - - U(S3) + V&). J 

Graphs of a(t) are shown in figure 12. It is found in Opalina that the rate of 
working is largest during the period when the wave is being propagated up the 
cilium. For Paramecium and Pleurobrachia the rate of working is largest in the 
effective stroke. At the completion of the effective stroke there appears to be 
a short time when the cilium has a ‘rest period’. The shape of the graphs is as 
expected because the forces and velocity are largest during the effective stroke 
in antiplectic metachronism while the same can be iderred for Opalina during 
the propagation of the bending wave. The energy dissipation over a complete 
cycle for the three organisms illustrated in figure 12 is approximately the same 
(i.e. 2n@ in all cases. This indicates that for a given O- and L antiplectic meta- 
chronism appears to be the more efficient means of propulsion. 



22 J .  Blake 

In  conclusion, the calculations record many interesting and stimulating re- 
sults which should encourage both more theoretical and experimental work on 
this subject. Backflow has yet to be observed experimentally, while improved 
calculations for the force, bending moments and energy dissipation will help the 
biophysicists with their understanding of the internal mechanisms of organelle 
movement. 

The author acknowledges the support of a George Murray Scholarship from 
the University of Adelaide and a studentship from C.S.I.R.O. of Australia for 
this research. Comments and suggestions from Professor Sir James Lighthill are 
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